Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Nitrobenzoyl)-3-phenylthiourea

Aamer Saeed^a* and Michael Bolte^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 13 July 2007; accepted 16 July 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.086; data-to-parameter ratio = 12.9.

Geometric parameters of the title compound, $C_{14}H_{11}N_3O_3S$, are in the usual ranges. The molecular conformation is stabilized by an N-H···O hydrogen bond. In the crystal structure, the molecules form centrosymmetric dimers connected by N-H···S hydrogen bonds. The molecule is almost planar (r.m.s. deviation for all atoms = 0.268 Å); only the torsion angles about the C-C bond between the carbonyl group and the nitrophenyl ring $[O-C-C-C = -157.92 (16)^{\circ}]$ and about the C-N bond between the phenyl ring and the amide group $[C-N-C-C = 15.9 (3)^{\circ}]$ differ significantly from 0 or 180° .

Related literature

For related literature, see: Koch (2001); Krishnamurthy *et al.* (1999); Saeed *et al.* (2007); Saeed & Pervez (2006); Sijia *et al.* (2003); Zeng *et al.* (2003).

Experimental

Crystal data $C_{14}H_{11}N_3O_3S$ $M_r = 301.32$ Monoclinic, $P2_1/c$ a = 8.2660 (10) Å

b = 12.1458 (9) Å
c = 13.6687 (16) Å
$\beta = 92.651 \ (10)^{\circ}$
V = 1370.8 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$

Data collection

Stoe IPDSII two-circle
diffractometer
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing,
1995)
$T_{\rm min} = 0.915, T_{\rm max} = 0.922$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.034 & \text{H atoms treated by a mixture of} \\ wR(F^2) = 0.086 & \text{independent and constrained} \\ S = 1.02 & \text{refinement} \\ 2552 \text{ reflections} & \Delta\rho_{\max} = 0.18 \text{ e } \text{\AA}^{-3} \\ 198 \text{ parameters} & \Delta\rho_{\min} = -0.27 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots S1^{i}$ $N2 - H2 \cdots O1$	0.85 (2)	2.68 (2)	3.4386 (14)	148.6 (17)
	0.86 (2)	1.93 (2)	2.6673 (16)	143 (2)

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

AS gratefully acknowledges a research grant from the Quaid-I-Azam University Islamabad Research Fund (project No. DFNS/ 2007-382).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2340).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.
- Krishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). Pestic. Sci. 52, 145–151.
- Saeed, A., Abbas, N. & Flörke, U. (2007). J. Braz. Chem. Soc. 18, 559-565.
- Saeed, A. & Pervez, M. (2006). J. Heterocycl. Chem. 43, 1027-1030.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical
- X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sijia, X., Liping, D., Shaoyong, K. & Liangbin, J. (2003). Chem. J. Internet, 5, 67–70.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Zeng, R. S., Zou, J. P., Zhi, S. J., Chen, J. & Shen, Q. (2003). Org. Lett. 61, 1657– 1659.

T = 173 (2) K

 $R_{\rm int} = 0.035$

 $0.36 \times 0.35 \times 0.33$ mm

7976 measured reflections 2552 independent reflections

2189 reflections with $I > 2\sigma(I)$

supplementary materials

Acta Cryst. (2007). E63, o3553 [doi:10.1107/S1600536807034587]

1-(4-Nitrobenzoyl)-3-phenylthiourea

A. Saeed and M. Bolte

Comment

1-Aroyl-3-arylthioureas are extremely versatile building blocks for the synthesis of a diversity of heterocyclic compounds: imidazole-2-thiones (Zeng *et al.*, 2003) and 1,3-thiazolines (Saeed & Pervez, 2006) and 2-aroylimino-3-aryl-thiazolidin-4-ones (Saeed *et al.*, 2007). *N*,*N*-Dialkyl-*N*-aroylthioureas are efficient ligands for the separation of platinum group metals (Koch, 2001). 1,3-Dialkyl- or diarylthioureas have shown significant antifungal activity against plant pathogens Pyricularia oryzae and Drechslera oryzae (Krishnamurthy *et al.*, 1999) and 1-benzoyl-3-(4,6-disubstituted-pyrimidine-2-yl)thioureas have shown excellent herbicidal activity (Sijia *et al.*, 2003).

Geometric parameters of the title compound in Fig. 1 are in the usual ranges. The molecular conformation is stabilized by an N—H···O hydrogen bond. In the crystal of the title compound, the molecules form centrosymmetric dimers connected by N—H···S hydrogen bonds (Fig. 2).

Experimental

To a suspension of potassium thiocyanate (0.97 g, 10 mmol) in acetone (30 ml) a solution of 4-nitrobenzoyl chloride (1.85 g, 10 mmol) in acetone (40 ml) was added dropwise and the reaction mixture was refluxed for 45 min. After cooling to room temperature, a solution of aniline (0.93 g, 10 mmol) in acetone (10 ml) was added and the resulting was mixture refluxed for 2 h. The reaction mixture was poured into cold water when the thiourea was precipitated as a solid. Recrystallized from ethanol as colourless crystals (2.7 g, 9.0 mmol, 90%). m.p. 433 K. IR (KBr) cm⁻¹: 3351 (free NH), 3200 (assoc. NH), 1667 (CO), 1610 (arom.), 1529 (thioureido I) 1325 II, 1160 III, 744, 762; ¹H NMR (CDCl₃) δ : 7.31–7.75 (aromatic), 9.19 (1*H*, s, broad, NH); 12.76' (1*H*, s, broad, NH); ¹³C NMR (CDCl₃) 126.2 (4 CH), 129.0 (2 CH), 129.20 (2CH), 130.7 (C), 132.1 (C),134.8 (C) 142.3 (C), 168.1 (C=O), 178.4 (C=S). EIMS m/e: 301, 168.9,126, 119, 91, 64.9. Analysis calculated for C₁₄H₁₁N₃O₃S: C 55.80, H 3.68, N 13.95, S 10.64%. Found: C 55.32, H 3.63, N 14.05, O 15.83, S 10.69%.

Refinement

H atoms were found in a difference map, but those bonded to C were refined using a riding model with C—H = 0.95Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms bonded to N were freely refined.

Figures

Fig. 1. Molecular structure of title compound.

Fig. 2. Crystal packing, view onto the bc plane. H-atoms not involved in hydrogen bonds are omitted. Hydrogen bonds are shown as dashed lines.

1-(4-Nitrobenzoyl)-3-phenylthiourea

Crystal data

 $C_{14}H_{11}N_3O_3S$ $M_r = 301.32$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.2660 (10) Å *b* = 12.1458 (9) Å c = 13.6687 (16) Å $\beta = 92.651 (10)^{\circ}$ V = 1370.8 (3) Å³ Z = 4

Dat

Data collection	
Stoe IPDSII two-circle diffractometer	2552 independent reflections
Radiation source: fine-focus sealed tube	2189 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.035$
T = 173(2) K	$\theta_{\text{max}} = 25.7^{\circ}$
ω scans	$\theta_{\min} = 3.7^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -10 \rightarrow 9$
$T_{\min} = 0.915, T_{\max} = 0.922$	$k = -14 \rightarrow 14$
7976 measured reflections	$l = -16 \rightarrow 16$

 $F_{000} = 624$

 $D_{\rm x} = 1.460 {\rm Mg m}^{-3}$

Cell parameters from 3023 reflections

Mo Kα radiation

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.5 - 25.7^{\circ}$

 $\mu = 0.25 \text{ mm}^{-1}$

T = 173 (2) K

Plate, light brown

 $0.36 \times 0.35 \times 0.33 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.086$	$w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 0.4301P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2552 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$

198 parameters

 $\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.28377 (6)	0.03643 (3)	0.56649 (4)	0.04069 (15)
01	0.43815 (14)	0.35452 (9)	0.41816 (8)	0.0331 (3)
N1	0.43245 (16)	0.16919 (11)	0.44820 (10)	0.0276 (3)
H1	0.468 (2)	0.1061 (18)	0.4329 (14)	0.041 (5)*
N2	0.28612 (16)	0.25938 (11)	0.56390 (10)	0.0272 (3)
H2	0.318 (3)	0.3148 (19)	0.5309 (15)	0.048 (6)*
N3	0.80042 (19)	0.19139 (16)	0.03823 (11)	0.0458 (4)
O3	0.8597 (2)	0.27153 (16)	0.00061 (11)	0.0732 (5)
O4	0.8076 (2)	0.09774 (16)	0.00561 (11)	0.0710 (5)
C1	0.47242 (18)	0.25966 (12)	0.39415 (11)	0.0249 (3)
C2	0.33267 (18)	0.16213 (12)	0.52899 (11)	0.0264 (3)
C11	0.55951 (18)	0.23703 (12)	0.30229 (11)	0.0246 (3)
C12	0.5533 (2)	0.13494 (13)	0.25513 (11)	0.0297 (3)
H12	0.4948	0.0760	0.2823	0.036*
C13	0.6324 (2)	0.11912 (15)	0.16862 (12)	0.0347 (4)
H13	0.6300	0.0497	0.1366	0.042*
C14	0.71447 (19)	0.20733 (15)	0.13050 (11)	0.0320 (4)
C15	0.7210 (2)	0.30996 (15)	0.17389 (12)	0.0336 (4)
H15	0.7772	0.3691	0.1451	0.040*
C16	0.64315 (19)	0.32438 (13)	0.26103 (11)	0.0293 (3)
H16	0.6468	0.3940	0.2927	0.035*
C21	0.19553 (18)	0.28671 (13)	0.64695 (11)	0.0256 (3)
C22	0.1432 (2)	0.39581 (14)	0.65039 (12)	0.0334 (4)
H22	0.1616	0.4443	0.5975	0.040*
C23	0.0637 (2)	0.43343 (15)	0.73191 (14)	0.0399 (4)
H23	0.0287	0.5078	0.7343	0.048*
C24	0.0352 (2)	0.36344 (16)	0.80929 (13)	0.0389 (4)
H24	-0.0188	0.3895	0.8646	0.047*
C25	0.0864 (2)	0.25506 (16)	0.80501 (12)	0.0360 (4)
H25	0.0666	0.2068	0.8578	0.043*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C26	0.16682 (19)	0.21546 (14)	0.72428 (11)	0.0313 (4)
H26	0.2014	0.1409	0.7222	0.038*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0497 (3)	0.0230 (2)	0.0519 (3)	0.00346 (18)	0.0294 (2)	0.00788 (19)
01	0.0479 (7)	0.0208 (6)	0.0321 (6)	-0.0008 (5)	0.0179 (5)	-0.0017 (5)
N1	0.0356 (7)	0.0207 (7)	0.0276 (7)	0.0039 (5)	0.0134 (5)	0.0024 (5)
N2	0.0341 (7)	0.0226 (7)	0.0261 (7)	-0.0001 (5)	0.0120 (5)	0.0010 (6)
N3	0.0408 (8)	0.0710 (12)	0.0259 (7)	0.0174 (8)	0.0050 (6)	-0.0059 (8)
03	0.0937 (13)	0.0830 (12)	0.0467 (9)	0.0268 (10)	0.0450 (9)	0.0214 (9)
04	0.0732 (11)	0.0910 (13)	0.0504 (9)	0.0029 (9)	0.0198 (8)	-0.0404 (9)
C1	0.0283 (8)	0.0229 (8)	0.0240 (7)	-0.0011 (6)	0.0054 (6)	0.0000 (6)
C2	0.0273 (7)	0.0254 (8)	0.0271 (7)	0.0016 (6)	0.0074 (6)	0.0026 (6)
C11	0.0273 (7)	0.0243 (8)	0.0224 (7)	0.0023 (6)	0.0038 (6)	0.0006 (6)
C12	0.0370 (8)	0.0261 (8)	0.0260 (7)	0.0001 (6)	0.0023 (6)	-0.0015 (6)
C13	0.0434 (9)	0.0336 (9)	0.0269 (8)	0.0076 (7)	-0.0003 (7)	-0.0088 (7)
C14	0.0324 (8)	0.0455 (10)	0.0184 (7)	0.0116 (7)	0.0045 (6)	-0.0012 (7)
C15	0.0352 (8)	0.0380 (9)	0.0284 (8)	0.0009 (7)	0.0104 (7)	0.0053 (7)
C16	0.0368 (8)	0.0249 (8)	0.0270 (8)	-0.0002 (6)	0.0092 (6)	-0.0012 (6)
C21	0.0248 (7)	0.0281 (8)	0.0244 (7)	-0.0015 (6)	0.0064 (6)	-0.0023 (6)
C22	0.0382 (9)	0.0284 (8)	0.0343 (8)	-0.0008 (7)	0.0093 (7)	-0.0017 (7)
C23	0.0400 (9)	0.0352 (9)	0.0456 (10)	0.0029 (7)	0.0125 (8)	-0.0114 (8)
C24	0.0334 (9)	0.0512 (11)	0.0331 (9)	-0.0017 (8)	0.0119 (7)	-0.0128 (8)
C25	0.0345 (9)	0.0482 (10)	0.0261 (8)	-0.0041 (7)	0.0097 (7)	0.0007 (7)
C26	0.0321 (8)	0.0344 (9)	0.0283 (8)	0.0002 (7)	0.0092 (6)	0.0019 (7)

Geometric parameters (Å, °)

S1—C2	1.6661 (15)	C13—H13	0.9500
01—C1	1.2345 (18)	C14—C15	1.380 (3)
N1C1	1.373 (2)	C15—C16	1.391 (2)
N1—C2	1.4111 (18)	C15—H15	0.9500
N1—H1	0.85 (2)	C16—H16	0.9500
N2—C2	1.3373 (19)	C21—C26	1.395 (2)
N2-C21	1.4276 (19)	C21—C22	1.395 (2)
N2—H2	0.86 (2)	C22—C23	1.397 (2)
N3—O3	1.215 (2)	C22—H22	0.9500
N3—O4	1.224 (2)	C23—C24	1.386 (3)
N3—C14	1.489 (2)	С23—Н23	0.9500
C1-C11	1.501 (2)	C24—C25	1.385 (3)
C11—C12	1.397 (2)	C24—H24	0.9500
C11—C16	1.399 (2)	C25—C26	1.399 (2)
C12—C13	1.390 (2)	С25—Н25	0.9500
С12—Н12	0.9500	С26—Н26	0.9500
C13—C14	1.383 (3)		
C1—N1—C2	129.32 (13)	C13—C14—N3	118.70 (16)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C1—N1—H1	119.7 (13)	C14—C15—C16		118.10 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N1—H1	111.0 (13)	C14—C15—H15		120.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2—N2—C21	131.25 (14)	С16—С15—Н15		120.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2—N2—H2	114.0 (14)	C15-C16-C11		120.43 (15)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C21—N2—H2	114.8 (14)	С15—С16—Н16		119.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O3—N3—O4	124.27 (16)	C11-C16-H16		119.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O3—N3—C14	118.18 (17)	C26—C21—C22		119.99 (14)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O4—N3—C14	117.55 (18)	C26—C21—N2		124.90 (14)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O1—C1—N1	122.69 (13)	C22—C21—N2		114.98 (14)
$\begin{split} & \text{NI-C1-C1I} & 116.11 (13) & \text{C21-C22-H22} & 20.1 \\ & \text{N2-C2-N1} & 114.45 (13) & \text{C23-C22-H22} & 20.7 (17) \\ & \text{N2-C2-S1} & 12.84 (11) & \text{C24-C23-H23} & 119.6 \\ & \text{C12-C1I-C1} & 12.65 (13) & \text{C25-C24-H23} & 119.6 \\ & \text{C12-C1I-C1} & 122.65 (13) & \text{C25-C24-H23} & 119.6 \\ & \text{C12-C1I-C1} & 117.59 (13) & \text{C25-C24-H24} & 120.4 \\ & \text{C13-C12-C11} & 120.42 (15) & \text{C23-C24-H24} & 120.4 \\ & \text{C13-C12-H12} & 119.8 & \text{C24-C25-C26} & 121.15 (16) \\ & \text{C11-C12-H12} & 119.8 & \text{C24-C25-H25} & 119.4 \\ & \text{C14-C13-C12} & 118.12 (15) & \text{C26-C25-H25} & 119.4 \\ & \text{C14-C13-C12} & 118.12 (15) & \text{C26-C25-H25} & 119.4 \\ & \text{C14-C13-H13} & 120.9 & \text{C21-C26-H26} & 120.4 \\ & \text{C15-C14-C13} & 123.22 (14) & \text{C25-C26-H26} & 120.4 \\ & \text{C15-C14-C13} & 123.22 (14) & \text{C25-C26-H26} & 120.4 \\ & \text{C15-C14-C13} & 123.22 (14) & \text{C25-C26-H26} & 120.4 \\ & \text{C15-C14-C13} & 123.22 (14) & \text{C25-C26-H26} & 120.4 \\ & \text{C15-C14-C13} & 123.22 (14) & \text{C25-C26-H26} & 120.4 \\ & \text{C15-C14-C13} & 123.22 (14) & \text{C25-C26-H26} & 120.4 \\ & \text{C15-C14-C13} & 173.47 (17) \\ & \text{C2-NI-C1-C1I} & -170.27 (15) & \text{O4-N3-C14-C13} & -71. (2) \\ & \text{C21-N2-C2-N1} & -175.45 (15) & \text{C13-C14-C15} & -05. (2) \\ & \text{O1-NI-C2-N2} & -84.(2) & \text{C14-C15-C16} & 10.03 \\ & \text{C21-N2-C2-S1} & 65.(3) & \text{N3-C14-C15-C16} & -178.89 (14) \\ & \text{C1-NI-C2-N2} & -84.(2) & \text{C14-C15-C16} & -178.89 (14) \\ & \text{C1-NI-C2-N2} & -84.(2) & \text{C14-C15-C16} & -177.50 (15) \\ & \text{NI-C1-C11-C12} & 21.4.(2) & \text{C2-N2-C21-C26} & 15.9 (3) \\ & \text{O1-C1-C11-C12} & 21.4.(2) & \text{C2-N2-C21-C26} & 0.5 (2) \\ & \text{O1-C1-C11-C12} & 13.3 (2) & \text{N2-C12-C22-C23} & -175.42 (15) \\ & \text{C1-N1-C2-C13} & 1.3 (2) & \text{N2-C21-C22-C23} & -175.42 (15) \\ & \text{C1-C11-C12-C13} & 178.13 (15) & \text{C12-C12-C22} & -23. \\ & \text{C14-C15} & -0.5 (2) \\ & \text{O1-C1-C11-C12} & -0.6 (2) & \text{C22-C23-C24} & -0.4 (3) \\ & \text{C1-C12-C13-C14-C15} & -0.3 (3) & \text{C22-C24-C25} & -0.5 (2) \\ & \text{O3-N3-C14-C15} & -0.6 (2) & \text{N2-C21-C26-C25} & -0.5 (2) \\ & \text{O3-N3-C14-C15} & -0.6 (2) & \text{N2-C21-C26-C25} & -0.5 (2) \\ & \text{O3-N3-C14-C15} & -0.5 ($	O1—C1—C11	121.20 (13)	C21—C22—C23		119.72 (16)
$\begin{split} & \text{N2}-\text{C2}-\text{N1} & 114.45 (13) & \text{C2}3-\text{C2}2-\text{H22} & 120.1 \\ & \text{N2}-\text{C2}-\text{S1} & 128.43 (11) & \text{C2}4-\text{C2}3-\text{C22} & 120.73 (17) \\ & \text{N1}-\text{C2}-\text{S1} & 17.09 (11) & \text{C2}4-\text{C2}3-\text{H23} & 119.6 \\ & \text{C12}-\text{C11}-\text{C16} & 119.68 (14) & \text{C2}2-\text{C23}-\text{H23} & 119.20 (15) \\ & \text{C12}-\text{C11}-\text{C1} & 122.65 (13) & \text{C2}5-\text{C2}4-\text{C23} & 129.20 (15) \\ & \text{C13}-\text{C12}-\text{C11} & 120.42 (15) & \text{C2}3-\text{C24}-\text{H24} & 120.4 \\ & \text{C13}-\text{C12}-\text{C11} & 120.42 (15) & \text{C2}3-\text{C24}-\text{H24} & 120.4 \\ & \text{C13}-\text{C12}-\text{C11} & 120.42 (15) & \text{C2}3-\text{C24}-\text{H24} & 120.4 \\ & \text{C13}-\text{C12}-\text{C11} & 119.8 & \text{C2}4-\text{C25}-\text{H25} & 119.4 \\ & \text{C14}-\text{C13}-\text{C12} & 118.12 (15) & \text{C2}6-\text{C25}-\text{H25} & 119.4 \\ & \text{C14}-\text{C13}-\text{C12} & 118.12 (15) & \text{C2}6-\text{C25}-\text{H25} & 119.20 (16) \\ & \text{C14}-\text{C13}-\text{H13} & 120.9 & \text{C2}1-\text{C26}-\text{C25} & 119.20 (16) \\ & \text{C15}-\text{C14}-\text{C13} & 123.22 (14) & \text{C25}-\text{C26}-\text{H26} & 120.4 \\ & \text{C15}-\text{C14}-\text{C13} & 123.22 (14) & \text{C25}-\text{C26}-\text{H26} & 120.4 \\ & \text{C15}-\text{C14}-\text{C13} & 123.22 (14) & \text{C25}-\text{C26}-\text{H26} & 120.4 \\ & \text{C15}-\text{C14}-\text{C13} & 173.47 (17) \\ & \text{C2}-\text{N1}-\text{C1}-\text{O1} & 9.0 (3) & \text{O3}-\text{N3}-\text{C14}-\text{C13} & -7.1 (2) \\ & \text{C2}-\text{N1}-\text{C1}-\text{O1} & 9.0 (3) & \text{O3}-\text{N3}-\text{C14}-\text{C13} & -7.1 (2) \\ & \text{C1}-\text{N1}-\text{C2}-\text{N1} & -175.45 (15) & \text{C13}-\text{C14}-\text{C15}-\text{C16} & 1.0 (3) \\ & \text{C1}-\text{N1}-\text{C2}-\text{N2} & -8.4 (2) & \text{C14}-\text{C15}-\text{C16} & -178.89 (14) \\ & \text{C1}-\text{N1}-\text{C2}-\text{N2} & -8.4 (2) & \text{C1}-\text{C1}-\text{C15} & -0.5 (2) \\ & \text{O1}-\text{C1}-\text{C1}-\text{C1} & -16 & 19.0 (2) & \text{C2}-\text{N2}-\text{C2}-\text{C2} & -168.24 (16) \\ \\ & \text{N1}-\text{C1}-\text{C1}-\text{C1} & 1.3 (2) & \text{N2}-\text{C2}-\text{C2} & -26 & -3 (3) \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -16 & 1.9 (3) \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -16 & 1.9 (3) \\ & \text{C2}-\text{C2}-\text{C2} & -26 & -25 & -0.5 (2) \\ & \text{O1}-\text{C1}-\text{C1}-\text{C1} & -0.5 & 1.3 (3) \\ & \text{C2}-\text{C2}-\text{C2}-\text{C2} & -26 & -26 & -3 (3) \\ & \text{C2}-\text{C1}-\text{C1}-\text{C1} & -16 & 1.9 (3) \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -16 & 1.9 (3) \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -16 & 1.9 (3) \\ & \text{C2}-\text{C2}-\text{C2}-\text{C2} & -26 & -26 & 0$	N1—C1—C11	116.11 (13)	С21—С22—Н22		120.1
$\begin{split} & \text{N2} = \text{C2} = \text{S1} & \text{128, 43, (11)} & \text{C24} = \text{C22} = \text{C22} & \text{120, 73, (17)} \\ & \text{N1} = \text{C2} = \text{S1} & \text{117, 09, (11)} & \text{C24} = \text{C23} = \text{H23} & \text{119, 6} \\ & \text{C12} = \text{C11} = \text{C16} & \text{119, 68, (14)} & \text{C22} = \text{C23} = \text{H23} & \text{119, 20, (15)} \\ & \text{C12} = \text{C11} = \text{C1} & \text{117, 59, (13)} & \text{C25} = \text{C24} = \text{H24} & \text{120, 4} \\ & \text{C13} = \text{C12} = \text{C11} & \text{120, 42, (15)} & \text{C23} = \text{C24} = \text{H24} & \text{120, 4} \\ & \text{C13} = \text{C12} = \text{L112} & \text{119, 8} & \text{C24} = \text{C25} = \text{C26} & \text{121, 15, (16)} \\ & \text{C13} = \text{C12} = \text{H12} & \text{119, 8} & \text{C24} = \text{C25} = \text{C25} & \text{119, 4} \\ & \text{C14} = \text{C13} = \text{H13} & \text{120, 9} & \text{C21} = \text{C26} = \text{C25} & \text{H25} & \text{119, 4} \\ & \text{C14} = \text{C13} = \text{H13} & \text{120, 9} & \text{C21} = \text{C26} = \text{C25} & \text{H26} & \text{120, 4} \\ & \text{C15} = \text{C14} = \text{C13} & \text{123, 22, (14)} & \text{C25} = \text{C26} = \text{H26} & \text{120, 4} \\ & \text{C15} = \text{C14} = \text{C13} & \text{123, 22, (14)} & \text{C25} = \text{C26} = \text{H26} & \text{120, 4} \\ & \text{C15} = \text{C14} = \text{C13} & \text{173, 47, (17)} \\ & \text{C2} = \text{N1} = \text{C1} = \text{C1} \text{C1} & \text{C17} \text{C13} & \text{71, 37, 47, (17)} \\ & \text{C2} = \text{N1} = \text{C1} = \text{C1} \text{C1} & \text{C17} \text{C13} & \text{71, 37, 47, (17)} \\ & \text{C2} = \text{N1} = \text{C1} = \text{C1} \text{C1} & \text{170, 27, (15)} & \text{O4} = \text{N3} = \text{C14} = \text{C13} & \text{71, 12, 2} \\ & \text{C1} = \text{N1} = \text{C2} = \text{N1} & \text{65, (3)} & \text{N3} = \text{C14} = \text{C13} & \text{71, 12, 2} \\ & \text{C1} = \text{N1} = \text{C2} = \text{N2} & \text{65, (3)} & \text{N3} = \text{C14} = \text{C15} = \text{C16} & \text{10, (3)} \\ & \text{C1} = \text{N1} = \text{C2} = \text{N2} & \text{65, (3)} & \text{N3} = \text{C14} = \text{C15} = \text{C1} \text{66, (2)} \\ & \text{C1} = \text{N1} = \text{C2} = \text{N2} & \text{66, (13)} & \text{C1} = \text{C1} = \text{C16} = \text{C1} \text{1} & \text{0.6, (2)} \\ & \text{C1} = \text{N1} = \text{C2} = \text{N2} & \text{C2} = \text{C2} = \text{C2} = \text{C2} \text{C2} = \text{C2} \text{C2} = \text{C2} = \text{C2} \text{C2} = \text{C2} \text{C2} = \text{C2} = \text{C2} \text{C2} = \text{C2} = \text{C2} = \text{C2} \text{C2} = C$	N2-C2-N1	114.45 (13)	С23—С22—Н22		120.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N2—C2—S1	128.43 (11)	C24—C23—C22		120.73 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—S1	117.09 (11)	С24—С23—Н23		119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C16	119.68 (14)	С22—С23—Н23		119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C1	122.65 (13)	C25—C24—C23		119.20 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C11—C1	117.59 (13)	С25—С24—Н24		120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C12—C11	120.42 (15)	С23—С24—Н24		120.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C13—C12—H12	119.8	C24—C25—C26		121.15 (16)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C11—C12—H12	119.8	С24—С25—Н25		119.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C14—C13—C12	118.12 (15)	С26—С25—Н25		119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C13—H13	120.9	C21—C26—C25		119.20 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С12—С13—Н13	120.9	C21—C26—H26		120.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C15-C14-C13	123.22 (14)	С25—С26—Н26		120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C14—N3	118.07 (16)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N1—C1—O1	9.0 (3)	O3—N3—C14—C13		173.47 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N1—C1—C11	-170.27 (15)	O4—N3—C14—C13		-7.1 (2)
C21N2C2S1 6.5 (3) N3C14C15C16 -178.89 (14) C1N1C2N2 -8.4 (2) C14C15C16C11 -0.6 (2) C1N1C2S1 169.96 (13) C12C11C16C15 -0.5 (2) O1C1C11C12 -157.92 (16) C1C11C16C15 -177.50 (15) N1C1C11C12 21.4 (2) C2N2C21C26 15.9 (3) O1C1C11C16 19.0 (2) C2N2C21C22 -168.24 (16) N1C1C11C16 -161.71 (14) C26C21C22C23 0.7 (3) C16C11C12C13 1.3 (2) N2C21C22C23 -0.4 (3) C11C12C13C14 -0.9 (2) C22C23C24 -0.4 (3) C12C13C14C15 -0.3 (3) C23C24C25C26 0.3 (3) C12C13C14C15 -0.5 (2) N2C21C26C25 -0.5 (2) O3N3C14C15 -6.6 (2) N2C21C26C25 -0.5 (2) O3-N3C14C15 172.86 (17) C24C25C26C21 0.0 (3) Hydrogen-bond geometry (Å, °) DH H···A D···A DH···A N1H1···S1 ¹ 0.85 (2) 2.68 (2) 3.4386 (14) 143.6(17) </td <td>C21—N2—C2—N1</td> <td>-175.45 (15)</td> <td>C13—C14—C15—C16</td> <td></td> <td>1.0 (3)</td>	C21—N2—C2—N1	-175.45 (15)	C13—C14—C15—C16		1.0 (3)
C1N1C2N2 -8.4 (2) C14C15C16C11 -0.6 (2) C1N1C2S1 169.96 (13) C12C11C16C15 -0.5 (2) O1C1C11C12 -157.92 (16) C1C11C16C15 -177.50 (15) N1C1C11C12 21.4 (2) C2N2C21C26 15.9 (3) O1C1C11C16 19.0 (2) C2N2C21C22 -168.24 (16) N1C1C11C16 -161.71 (14) C26C21C22C23 0.7 (3) C16C11C12C13 1.3 (2) N2C21C22C23 -175.42 (15) C1C11C12C13 1.78.13 (15) C21C22C23C24 -0.4 (3) C11C12C13C14 -0.9 (2) C22C23C24C25 -0.1 (3) C12C13C14C15 -0.3 (3) C23C24C25C26 0.3 (3) C12C13C14C15 -0.6 (2) N2C21C26C25 -0.5 (2) O3N3C14C15 -6.6 (2) N2C21C26C25 175.20 (15) O4-N3C14C15 172.86 (17) C24C25C26C21 0.0 (3)	C21—N2—C2—S1	6.5 (3)	N3-C14-C15-C16		-178.89 (14)
C1—N1—C2—S1 169.96 (13) C12—C11—C16—C15 $-0.5 (2)$ O1—C1—C11—C12 $-157.92 (16)$ C1—C11—C16—C15 $-177.50 (15)$ N1—C1—C11—C12 21.4 (2) C2—N2—C21—C26 15.9 (3) O1—C1—C11—C16 19.0 (2) C2—N2—C21—C22 $-168.24 (16)$ N1—C1—C11—C16 $-161.71 (14)$ C26—C21—C22—C23 $0.7 (3)$ C16—C11—C12—C13 1.3 (2) N2—C21—C22—C23 $-175.42 (15)$ C1—C11—C12—C13 178.13 (15) C21—C22—C23—C24 $-0.4 (3)$ C11—C12—C13—C14 $-0.9 (2)$ C22—C23—C24—C25 $-0.1 (3)$ C12—C13—C14—C15 $-0.3 (3)$ C23—C24—C25—C26 $0.3 (3)$ C12—C13—C14—N3 179.65 (15) C22—C21—C26—C25 $-0.5 (2)$ O3—N3—C14—C15 $-6.6 (2)$ N2—C21—C26—C25 $-0.5 (2)$ O3—N3—C14—C15 $172.86 (17)$ C24—C25—C26—C21 $0.0 (3)$ Hydrogen-bond geometry (Å, °) D—H···A D···A D—H···A N1—H1···S1 ⁱ $0.85 (2)$ $2.68 (2)$ $3.4386 (14)$ $148.6 (17)$ N2—H2···O1 $0.86 (2)$ $1.93 (2)$ $2.6673 (16)$ 14	C1—N1—C2—N2	-8.4 (2)	C14—C15—C16—C11		-0.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C2—S1	169.96 (13)	C12—C11—C16—C15		-0.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C1—C11—C12	-157.92 (16)	C1-C11-C16-C15		-177.50 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C11—C12	21.4 (2)	C2-N2-C21-C26		15.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C1—C11—C16	19.0 (2)	C2—N2—C21—C22		-168.24 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C1-C11-C16	-161.71 (14)	C26—C21—C22—C23		0.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C11—C12—C13	1.3 (2)	N2-C21-C22-C23		-175.42 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C11—C12—C13	178.13 (15)	C21—C22—C23—C24		-0.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C13—C14	-0.9 (2)	C22—C23—C24—C25		-0.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-C13-C14-C15	-0.3 (3)	C23—C24—C25—C26		0.3 (3)
O3-N3-C14-C15 -6.6 (2) N2-C21-C26-C25 175.20 (15) O4-N3-C14-C15 172.86 (17) C24-C25-C26-C21 0.0 (3) Hydrogen-bond geometry (Å, °) D -H H···A D -··A D H···A N1H1···S1 ⁱ 0.85 (2) 2.68 (2) 3.4386 (14) 148.6 (17) N2H2···O1 0.86 (2) 1.93 (2) 2.6673 (16) 143 (2)	C12-C13-C14-N3	179.65 (15)	C22—C21—C26—C25		-0.5 (2)
$O4-N3-C14-C15$ $172.86 (17)$ $C24-C25-C26-C21$ $0.0 (3)$ <i>Hydrogen-bond geometry (Å, °)</i> $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $N1-H1\cdots S1^i$ $0.85 (2)$ $2.68 (2)$ $3.4386 (14)$ $148.6 (17)$ $N2-H2\cdots O1$ $0.86 (2)$ $1.93 (2)$ $2.6673 (16)$ $143 (2)$ Symmetry codes: (i) $-x+1, -y, -z+1.$ $D-H$ $D-H \cdots A$ $D-H \cdots A$	O3—N3—C14—C15	-6.6 (2)	N2-C21-C26-C25		175.20 (15)
Hydrogen-bond geometry (Å, °) D —H H···A D ···A D —H···A N1—H1···S1 ⁱ 0.85 (2) 2.68 (2) 3.4386 (14) 148.6 (17) N2—H2···O1 0.86 (2) 1.93 (2) 2.6673 (16) 143 (2) Symmetry codes: (i) -x+1, -y, -z+1. $-x+1$, $-y$, $-z+1$. $-x+1$ $-x+1$ $-x+1$	O4—N3—C14—C15	172.86 (17)	C24—C25—C26—C21		0.0 (3)
D—H···A D —HH···A D ···A D —H···AN1—H1···S1 ⁱ 0.85 (2)2.68 (2)3.4386 (14)148.6 (17)N2—H2···O10.86 (2)1.93 (2)2.6673 (16)143 (2)Symmetry codes: (i) -x+1, -y, -z+1	Hydrogen-bond geometry (Å, °)				
N1—H1…S1i $0.85(2)$ $2.68(2)$ $3.4386(14)$ $148.6(17)$ N2—H2…O1 $0.86(2)$ $1.93(2)$ $2.6673(16)$ $143(2)$ Symmetry codes: (i) $-x+1, -y, -z+1.$	D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2···O1 0.86 (2) 1.93 (2) 2.6673 (16) 143 (2) Symmetry codes: (i) $-x+1, -y, -z+1$.	$N1$ — $H1$ ···· $S1^{i}$	0.85 (2)	2.68 (2)	3.4386 (14)	148.6 (17)
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.	N2—H2…O1	0.86(2)	1.93 (2)	2.6673 (16)	143 (2)
	Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.	(-)			

